Proof that 1 is the only perfect square of the form $\underbrace{1111 \ldots 1}_{n}$

Henry Díaz Bordón*

January 1, 2024

Abstract

In the following paper, a proof founded upon number-theoretic results will be exposed for the theorem that, among the natural numbers of the form $1111 \ldots 1$, that is, constructed of n ones juxtaposed - for a given integer n greater than zero-, 1 is the sole element of such succession which verifies the property of being a perfect square, namely the square of another positive integer.

Theorem. From the sequence of numbers of the form $\underbrace{1111 \ldots 1}_{n}$, where $n \in \mathbb{N}, 1$ is the single term whose square root is a natural number.

Proof. Fix an $n \in \mathbb{N}$. Suppose then that $\underbrace{1111 \ldots 1}_{n}$ is a perfect square, therefore exists a number k such that $k \in \mathbb{N}$ and $k^{2}=\underbrace{1111 \ldots 1}_{n}$. From this proposition follows - translating into modular arithmetic - the congruence equation written below:

$$
\begin{equation*}
k^{2} \equiv \underbrace{1111 \ldots 1}_{n} \equiv 1 \quad(\bmod 10) \tag{1}
\end{equation*}
$$

Which, after being solved by computational means through snippet 1 , yields the following two possibilities:

$$
\begin{equation*}
k \equiv 1 \quad(\bmod 10) \text { or } k \equiv 9 \quad(\bmod 10) \tag{2}
\end{equation*}
$$

[^0]This implies that the given natural k is compelled to be of the form $\overline{m 1}$ or $\overline{m 9}$, where $m \in \mathbb{N}_{0}{ }^{2}$.

If m had a value of zero, then two possible values for k will arise, namely $k=1$ and $k=9.1^{2}=1$, which indicates that 1 is indeed a perfect square that belongs to our initial set, whereas 9 , however, does not verify such property, since $9^{2}=81$, which is not of the form $\underbrace{1111 \ldots 1}_{n}$. It shall now be proven that k cannot adopt a value different from 1 .

For an $m \neq 0$, on the other hand, this condition bifurcates once again into the two different possibilities:

- If $k=\overline{m 1}=10 m+1$, squaring k and knowing that it shall be of more than two digits, we reach the following congruence:

$$
\begin{equation*}
(10 m+1)^{2} \equiv 11 \quad(\bmod 100) \tag{3}
\end{equation*}
$$

Which after further simplifications the following scenario can be concluded:

$$
\begin{align*}
(10 m+1)^{2} & \equiv 100 m^{2}+20 m+1 \equiv 20 m+1 \equiv 11 \quad(\bmod 100) \tag{4}\\
\Longrightarrow 20 m & \equiv 10 \quad(\bmod 100) \tag{5}
\end{align*}
$$

And since $\operatorname{gcd}(20,100)=20 \nmid 10$, the congruence has no solution[1]. Computational evaluation employing code extract 2 results in no possible value of m, as well.

- If $k=\overline{m 9}=10 m+9$, raising k to the second power and realizing, once again, that it must be of more than two digits in length, we can set up the following congruence equation:

$$
\begin{equation*}
(10 m+9)^{2} \equiv 11 \quad(\bmod 100) \tag{6}
\end{equation*}
$$

Simplifying, the equality below is concluded:

$$
\begin{align*}
(10 m+9)^{2} & \equiv 100 m^{2}+180 m+81 \equiv 180 m+81 \equiv 11 \quad(\bmod 100) \tag{7}\\
\Longrightarrow 180 m & \equiv-70 \equiv 30 \quad(\bmod 100) \tag{8}
\end{align*}
$$

And following the same reasoning as for the case above, since $\operatorname{gcd}(180,100)=$ $20 \nmid 30$, the equation has no solution[1]. After being analyzed thoroughly by software means - by snippet 3- it again results in no possible value for m whatsoever.

[^1]Thus, it has been proven that such k does not exist unless the number in question has the value of 1 and hence, the original claim.

References

[1] G.E. Andrews. "Number Theory". In: Dover Books on Mathematics. Dover Publications, 1994, p. 60. ISBN: 9780486682525.
[2] Wolfram Research Inc. Mathematica, Version 13.3. Champaign, IL, 2023. URL: https://www. wolfram.com/mathematica.

Appendix

In order to find possible solutions to the congruence equations listed in this paper, the following Mathematica[2] code extracts were employed:
1.

$$
k^{2} \equiv \underbrace{1111 \ldots 1}_{n} \equiv 1 \quad(\bmod 10)
$$

$$
\begin{aligned}
& \operatorname{In}[0]:=\text { Solve }\left[\mathrm{k}^{\wedge} 2==1, \mathrm{k}, \text { Modulus } \rightarrow 10\right] \\
& \text { Out }[0]:=\{\{\mathrm{k} \rightarrow>1\},\{\mathrm{k} \rightarrow>9\}\}
\end{aligned}
$$

2.

$$
(10 m+1)^{2} \equiv 11 \quad(\bmod 100)
$$

$$
\begin{aligned}
& \operatorname{In}[1]:=\text { Solve }\left[(10 \mathrm{~m}+1)^{\wedge} 2==11, \mathrm{~m}, \text { Modulus } \rightarrow 100\right] \\
& \text { Out }[1]:=\{ \}
\end{aligned}
$$

3.

$$
(10 m+9)^{2} \equiv 11 \quad(\bmod 100)
$$

$$
\begin{aligned}
& \operatorname{In}[2]:=\text { Solve }\left[(10 \mathrm{~m}+9)^{\wedge} 2==11, \text { m, Modulus }->100\right] \\
& \text { Out }[2]:=\{ \}
\end{aligned}
$$

[^0]: *email: henrydiazbordon@gmail.com

[^1]: ${ }^{1}$ The notation $\overline{m n}$ in order to represent the concatenation of the numbers m and n will be utilized from now on in this paper.
 ${ }^{2}$ Let \mathbb{N}_{0} be defined as $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$

