

HEnRy Díaz Bordón, henrydiazbordon@gmail.com
October 13, 2023

Abstract

In the following paper a proof will be shown-through the use of the principle of mathematical induction-for the result that, given an integer n greater than or equal to zero, the product of $6666 \ldots 6$ with $n+1$ sixes and $6666 \ldots 67$ with n sixes is equal to $4444 \ldots 42222 \ldots 2$ with $n+1$ fours and $n+1$ twos.

Theorem. For any given n, such that $n \in \mathbb{N}_{0}{ }^{1}$, it is verified that:

$$
\underbrace{6666 \ldots 6}_{n+1} \times \underbrace{666 \ldots 6}_{n} 7=\underbrace{4444 \ldots 4}_{n+1} \underbrace{2222 \ldots 2}_{n+1}
$$

Proof. First, let the term a_{n} be defined as $a_{n} \equiv \sum_{k=0}^{n} 10^{k}$, which represents the integer composed of $n+1$ consecutive ones, and which computed for n between zero and five has the following appearance:

Term	Value of n	Value of a_{n}
a_{0}	0	1
a_{1}	1	11
a_{2}	2	111
a_{3}	3	1111
a_{4}	4	11111
a_{5}	5	111111

[^0]Therefore, we can rewrite the statement to be proven as the following expression in terms of a_{n} :

$$
6 a_{n} \times\left(6 a_{n}+1\right)=4 \cdot 10^{n+1} a_{n}+2 a_{n}
$$

Then, let this be our induction hypothesis, if we can prove that it holds for $n=0$ and $n=m+1$, we will show that it holds for all $n \in \mathbb{N}_{0}$, since the natural numbers are defined inductively in this manner.

- In the case $n=0$, it is easily verifiable that our hypothesis is fulfilled:

$$
6 a_{0} \times\left(6 a_{0}+1\right)=6 \cdot 1 \times(6 \cdot 1+1)=6 \times 7=42=4 \cdot 10^{1} \cdot 1+2 \cdot 1=4 \cdot 10^{0+1} a_{0}+2 a_{0}
$$

- For $n=m+1$, first evaluate a_{m+1} and rewrite it in terms of a_{m} :

$$
a_{m+1}=\sum_{k=0}^{m+1} 10^{k}=\sum_{k=0}^{m} 10^{k}+10^{m+1}=a_{m}+10^{m+1}
$$

Now, manipulating the first member of our induction hypothesis for $n=m+1$, we can transform it into the second:

$$
\begin{aligned}
6 a_{m+1} \times\left(6 a_{m+1}+1\right) & =36 a_{m+1}{ }^{2}+6 a_{m+1}=36\left(a_{m}+10^{m+1}\right)^{2}+6\left(a_{m}+10^{m+1}\right) \\
& =36\left(a_{m}{ }^{2}+2 a_{m} 10^{m+1}+10^{2 m+2}\right)+6\left(a_{m}+10^{m+1}\right) \\
& =36 a_{m}{ }^{2}+72 a_{m} 10^{m+1}+36 \cdot 10^{2 m+2}+6 a_{m}+6 \cdot 10^{m+1} \\
& =2 a_{m}+2 \cdot 10^{m+1}+4 \cdot 10^{m+2} a_{m}+4 a_{m}+4 \cdot 10^{m+1} \\
& +32 a_{m} 10^{m+1}+36 a_{m}{ }^{2}+36 \cdot 10^{2 m+2} \\
& =2 a_{m}+2 \cdot 10^{m+1}+4 \cdot 10^{m+2} a_{m} \\
& +4\left(a_{m}+10^{m+1}+8 a_{m} 10^{m+1}+9 a_{m}{ }^{2}+9 \cdot 10^{2 m+2}\right) \\
& =2 a_{m}+2 \cdot 10^{m+1}+4 \cdot 10^{m+2} a_{m} \\
& +4\left(a_{m}+10^{m+1}+8 a_{m} 10^{m+1}+9 a_{m}{ }^{2}+\underline{10^{2 m+3}-10^{2 m+2}}\right) \\
& =\ldots 4\left(\left(a_{m}+10^{m+1}+8 a_{m} 10^{m+1}+9 a_{m}{ }^{2}-10^{2 m+2}\right)+10^{2 m+3}\right) \\
& =\ldots 4\left(\left(\underline{\left.\left(0 a_{m}+1+8 a_{m} 10^{m+1}+9 a_{m}{ }^{2}-10^{2 m+2}\right)+10^{2 m+3}\right)}\right.\right. \\
& =\ldots 4\left(\left(\underline{\left(a_{m}\left(10+8 \cdot 10^{m+1}+9 a_{m}\right)\right.}+1-10^{2 m+2}\right)+10^{2 m+3}\right) \\
& =\ldots 4\left(\left(a_{m}\left(10+\underline{9 \cdot 10^{m+1}-1}\right)+1-10^{2 m+2}\right)+10^{2 m+3}\right) \\
& =\ldots 4\left(\left(a_{m}\left(\underline{9+9 \cdot 10^{m+1}}\right)+1-10^{2 m+2}\right)+10^{2 m+3}\right) \\
& =\ldots 4\left(\left(\underline{\left(a_{m}\left(1+10^{m+1}\right)\right.}+1-10^{2 m+2}\right)+10^{2 m+3}\right) \\
& \left.=\ldots 4\left(\left(\underline{\left(10^{m+1}-1\right)\left(10^{m+1}\right.}+1\right)+1-10^{2 m+2}\right)+10^{2 m+3}\right)
\end{aligned}
$$

An inductive proof that $\underbrace{6666 \ldots 6}_{n+1} \times \underbrace{666 \ldots 6}_{n} 7=\underbrace{4444 \ldots 4}_{n+1} \underbrace{2222 \ldots 2}_{n+1}$

$$
\begin{aligned}
& =\ldots 4\left(\frac{10^{2 m+2}-\not \subset+X-10^{2 m+2}+10^{2 m+3}}{=}\right) \\
& =\ldots 4 \cdot 10^{2 m+3}=2 a_{m}+2 \cdot 10^{m+1}+4 \cdot 10^{m+2} a_{m}+4 \cdot 10^{2 m+3} \\
& =2\left(a_{m}+10^{m+1}\right)+4 \cdot 10^{m+2}\left(a_{m}+10^{m+1}\right) \\
& =4 \cdot 10^{m+2} a_{m+1}+2 a_{m+1}
\end{aligned}
$$

And, in fact, if we insert $m+1$ in the second member of our induction hypothesis, we see that it is indeed equal to $4 \cdot 10^{m+2} a_{m+1}+2 a_{m+1}$.

Since our hypothesis is verified for $n=0$ and for $n=m+1$, by the principle of mathematical induction[1] we can affirm that it is verified for all natural numbers including zero, and our statement is thereby proven.

References

[1] Mark Flanagan. 2017. URL: https://www.ucd.ie/mathstat/t4media/Induction_principle_2017_ slides_web.pdf.

[^0]: ${ }^{1}$ Let \mathbb{N}_{0} be defined as $\mathbb{N}_{0} \equiv \mathbb{N} \cup\{0\}$

